Abstract

Thermal conduction in periodic multilayer composites can be strongly influenced by nonequilibrium electron-phonon scattering for periods shorter than the relevant free paths. Here we argue that two additional mechanisms-quasiballistic phonon transport normal to the metal film and inelastic electron-interface scattering-can also impact conduction in metal/dielectric multilayers with a period below 10 nm. Measurements use the 3ω method with six different bridge widths down to 50 nm to extract the in- and cross-plane effective conductivities of Mo/Si (2.8 nm/4.1 nm) multilayers, yielding 15.4 and 1.2 W/mK, respectively. The cross-plane thermal resistance is lower than can be predicted considering volume and interface scattering but is consistent with a new model built around a film-normal length scale for phonon-electron energy conversion in the metal. We introduce a criterion for the transition from electron to phonon dominated heat conduction in metal films bounded by dielectrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.