Abstract
The impact of phonon and their surrounding environment on exciton and its complexes were investigated in monolayer WSe2 semiconductor. Phonon up-conversion has been studied in past for conventional III–V semiconductors, but its role in two-dimensional layered transition metal dichalcogenides has rarely been explored. We investigated the photoluminescence up-conversion mechanism in WSe2 monolayer and found that a lower energy photon gain energy upto 64[Formula: see text]meV to be up-converted to emission photon at room temperature. Moreover, the phonon-exciton coupling mechanism has also been investigated and the role of dielectric screening has been explored to get complete insight of coulomb’s interaction in these electron-hole pairs. Investigations of charge carrier’s lifetime reveal that boron nitride encapsulated monolayer has shorter recombination time as low as 41 ps as compared to a bare monolayer on SiO2 substrate. These results are very promising for realizing spintronics-based application from two-dimensional layered semiconductors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have