Abstract

Abstract The joint effects of the electron–phonon interaction and electron–electron interaction in the Luttinger liquid leads on nonequilibrium transport through a single-molecule transistor in the Kondo regime are investigated by using the improved canonical transformation scheme and equation of motion approach. For weak intralead electron interaction, a pronounced dip around zero bias, accompanied by a series of discrete single-electron tunneling peaks is observed in the differential conductance. With the increase of the intralead interaction, the phonon-assisted peaks turn into dips, which demonstrates a phonon-assisted two-channel Kondo physics. For a certain region of interaction strength the inelastic electron tunneling can dominate electron transport. Our results well explain the experiments of zero bias anomaly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call