Abstract

We have used an electromigration technique to fabricate C$_{60}$-based single-molecule transistors. We detail the process statistics and the protocols used to infer the successful formation of a single-molecule transistor. At low temperatures each transistor acts as a single-electron device in the Coulomb blockade regime. Resonances in the differential conductance indicate vibrational excitations consistent with a known mode of C$_{60}$. In several devices we observe conductance features characteristic of the Kondo effect, a coherent many-body state comprising an unpaired spin on the molecule coupled by exchange to the conduction electrons of the leads. The inferred Kondo temperature typically exceeds 50 K, and signatures of the vibrational modes persist into the Kondo regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.