Abstract

We have classified all the possible types of phonon-assisted optical processes involving bound or extended initial, final, and virtual (intermediate) electron states and formulated, for the first time, in terms of site symmetry, the selection rules for corresponding transitions. We apply this theory to phonon-assisted transitions in hexagonal GaN involving substitutional impurities and vacancies with C 3v site-symmetry as well as interstitial impurities and molecular point defects (paired impurities, double vacancies, and vacancy-impurity complexes) occupying sites with C 3v, C s, and C 1 ones. We show that phonon-assisted optical recombination is allowed in any polarization for free and bound carriers and excitons whatever is the number of involved phonons. Just, the nature of virtual state(s) and phonon(s) can depend on the polarization of the emitted light. We discuss, in particular, the case of excitons bound to neutral donors or acceptors. Our predictions are in good agreement with experimental optical spectra published in the literature which exhibit numerous lines assigned to one- and multi-phonon-assisted transitions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.