Abstract
The full phonon spectra of two rational approximants to the incommensurate thermoelectric oxide material Ca3Co4O9 (CCO) are calculated from first principles within density functional theory (DFT) and its DFT + U extension. The computed phonon dispersion curves are then used to evaluate the constant volume heat capacity, as well as the full and partial (subsystem-projected) lattice thermal conductivity of CCO. The results are discussed in terms of the effects of the Hubbard U on the computed properties, the size of the rational approximants used to model CCO, the relative contributions of the two subsystems that comprise the misfit-layered material, and the anisotropic nature of the computed thermal conductivity. We obtain good agreement with available experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.