Abstract

ABSTRACTIn terrestrial higher plants, phloem transport delivers most nutrients required for growth and storage processes. Some 90% of plant biomass, transported as sugars and amino nitrogen (N) compounds in a bulk flow of solution, is propelled though the phloem by osmotically generated hydrostatic pressure differences between source (net nutrient export) and sink (net nutrient import) ends of phloem paths. Source loading and sink unloading of sugars, amino N compounds and potassium largely account for phloem sap osmotic concentrations and hence pressure differences. A symplasmic component is characteristic of most loading and unloading pathways which, in some circumstances, may be interrupted by an apoplasmic step. Raffinose series sugars appear to be loaded symplasmically. However, sucrose, and probably certain amino acids, are loaded into minor veins from source leaf apoplasms by proton symporters localized to plasma membranes of their sieve element/companion cell (se/cc) complexes. Sucrose transporters, with complementary kinetic properties, are conceived to function as membrane transporter complexes that respond to alterations in source/sink balance. In contrast, symplasmic unloading is common for many sink types. Intervention of an apoplasmic step, distal from importing phloem, is reserved for special situations. Effluxers that release sucrose and amino acids to the surrounding apoplasm in phloem loading and unloading are yet to be cloned. The physiological behaviour of effluxers is consistent with facilitated membrane transport that can be energy coupled. Roles of sucrose and amino acid transporters in phloem unloading remain to be discovered along with mechanisms regulating symplasmic transport. The latter is hypothesized to exert significant control over phloem unloading and, in some circumstances, phloem loading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call