Abstract
Mitochondrial dysfunction and endoplasmic reticulum (ER) stress occur in ischemic stroke. The disruption of these two organelles can directly lead to cell death through various signaling pathways. Thus, investigation of the associated molecular mechanisms in cerebral ischemia is a prerequisite for stroke treatment. Pleckstrin homology-like domain family A member 1 (PHLDA1) is a multifunctional protein that can modulate mitochondrial function and ER stress in cardiomyocyte and cancer cells. This work studied the role of PHLDA1 in cerebral ischemic/reperfusion (I/R) injury and explored the underlying mechanisms associated with mitochondrial functions and ER stress. Middle cerebral artery occlusion/reperfusion (MCAO/R)-treated mice and oxygen-glucose deprivation/reoxygenation (OGD/R)-stimulated neurons were used as I/R models in vivo and in vitro, respectively. PHLDA1 was upregulated in ischemic penumbra of MCAO/R-induced mice and OGD/R-exposed neurons. In vitro, PHLDA1 knockdown protected neurons from OGD/R-induced apoptosis. In vivo, PHLDA1 silencing facilitated functional recovery and reduced cerebral infarct volume. Mechanistically, PHLDA1 knockdown promoted PPARγ nuclear translocation, which may mediate the effects on reversion of mitochondrial functions and alleviation of ER stress. In summary, PHLDA1 knockdown alleviates neuronal ischemic injuries in mice. PPARγ activation and mitochondrial dysfunction and endoplasmic reticulum stress attenuation are involved in the underlying mechanisms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have