Abstract
The notion of a Sasaki projectionon an orthomodular lattice is generalized to a mapping Φ: E × E → E, where E is an effect algebra. If E is lattice ordered and Φ is symmetric, then E is called a Φ-symmetric effect algebra.This paper launches a study of such effect algebras. In particular, it is shown that every interval effect algebra with a lattice-ordered ambient group is Φ-symmetric, and its group is the one constructed by Ravindran in his proof that every effect algebra that has the Riesz decomposition property is an interval algebra. It is shown that the doubling construction introduced in the paper is connected to the conditional event algebrasof Goodman, Nguyen, and Walker.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.