Abstract

A significant property of a generalized effect algebra is that its every interval with inherited partial sum is an effect algebra. We show that in some sense the converse is also true. More precisely, we prove that a set with zero element is a generalized effect algebra if and only if all its intervals are effect algebras. We investigate inheritance of some properties from intervals to generalized effect algebras, e.g., the Riesz decomposition property, compatibility of every pair of elements, dense embedding into a complete effect algebra, to be a sub-(generalized) effect algebra, to be lattice ordered and others. The response to the Open Problem from Rieă?anova and Zajac (2013) for generalized effect algebras and their sub-generalized effect algebras is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.