Abstract
Generalized effect algebras as posets are unbounded versions of effect algebras having bounded effect-algebraic extensions. We show that when the MacNeille completion MC(P) of a generalized effect algebra P cannot be organized into a complete effect algebra by extending the operation ⊕ onto MC(P) then still P may be densely embedded into a complete effect algebra. Namely, we show these facts for Archimedean GMV-effect algebras and block-finite prelattice generalized effect algebras. Moreover, we show that extendable commutative BCK-algebras directed upwards are equivalent to generalized MV-effect algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.