Abstract
Phishing has been a cybercrime that has existed for a long time, and there are still many people who are victims of this attack. This research attempts to prevent phishing by extracting the attributes found on phishing websites. This study uses a hybrid method by combining allowlist and denylist as part of a classification system. This research utilizes 18 features to identify a phishing site in terms of address bar, abnormal request, and source code (HTML and JavaScript). Where in each feature the author determines the benchmark. This study validates the status code and detects 52 URL shortening service domains and then evaluates these abnormalities with a binary classification system. Algorithms that have good results are Decision Tree and K Nearest Neighbor (KNN). After evaluating the performance of the algorithm in terms of Precision, Recall, and F-Measure. As a result, the Decision Tree algorithm has the highest accuracy of 97.62% and the fastest computation time of 0.00894 seconds. So that the Decision Tree is superior in terms of accuracy and computation time in detecting phishing URLs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering, MAthematics and Computer Science (EMACS) Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.