Abstract

Hate speech is a form of expression used to spread hatred and commit acts of violence and discrimination against a person or group of people for various reasons. Cases of hate speech are very common in social media, one of which is Twitter. The goal to be achieved is to create a system that can classify a tweet on Twitter into hate speech (HS) or non-hate speech (NONHS) classes. The method used is Support Vector Machine by comparing the features of TF-IDF and Count Vectorizer. And the parameters compared are seen from accuracy, precision, recall, and f1-score. Results obtained, overall, by using the TF-IDF feature, the Support Vector Machine algorithm gets high results compared to the Count Vectorizer feature, with an accuracy value of 88.77%, 87.45% precision, 88.77% recall, and f1-score of 87.81%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.