Abstract

The electronic structure and the rearrangements of the phenylnitrene radical cation C6H5N.+ 2.+ have been investigated at DFT and CASPT2(7,9) levels of theory. The 2B2 state has the lowest energy of five identified electronic states, and it can undergo ring expansion to the 1-azacycloheptetetraene radical cation 4.+ with an activation energy of ca. 28 kcal/mol. Ring opening and recyclization provide a route to 5-cyanocyclopentadiene radical cation 8.+, which may undergo facile 1,5-hydrogen shifts. The 2-, 3-, and 4-pyridylcarbene radical cations 31.+, 35.+ , and 39.+ interconvert with the phenylnitrene radical cation via azacycloheptatetraenes with activation barriers <35 kcal/mol. The carbene-carbene and carbene-nitrene rearrangements, ring expansions, ring contractions, ring openings (e.g., to cyanopentadienylidene 28.+), and cyclizations taking place in all these radical cations are completely analogous to the thermal and photochemical rearrangements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call