Abstract

BackgroundThe root system architecture (RSA) of alfalfa (Medicago sativa L.) affects biomass production by influencing water and nutrient uptake, including nitrogen fixation. Further, roots are important for storing carbohydrates that are needed for regrowth in spring and after each harvest. Previous selection for a greater number of branched and fibrous roots significantly increased alfalfa biomass yield. However, phenotyping root systems of mature alfalfa plant is labor-intensive, time-consuming, and subject to environmental variability and human error. High-throughput and detailed phenotyping methods are needed to accelerate the development of alfalfa germplasm with distinct RSAs adapted to specific environmental conditions and for enhancing productivity in elite germplasm. In this study methods were developed for phenotyping 14-day-old alfalfa seedlings to identify measurable root traits that are highly heritable and can differentiate plants with either a branched or a tap rooted phenotype. Plants were grown in a soil-free mixture under controlled conditions, then the root systems were imaged with a flatbed scanner and measured using WinRhizo software.ResultsThe branched root plants had a significantly greater number of tertiary roots and significantly longer tertiary roots relative to the tap rooted plants. Additionally, the branch rooted population had significantly more secondary roots > 2.5 cm relative to the tap rooted population. These two parameters distinguishing phenotypes were confirmed using two machine learning algorithms, Random Forest and Gradient Boosting Machines. Plants selected as seedlings for the branch rooted or tap rooted phenotypes were used in crossing blocks that resulted in a genetic gain of 10%, consistent with the previous selection strategy that utilized manual root scoring to phenotype 22-week-old-plants. Heritability analysis of various root architecture parameters from selected seedlings showed tertiary root length and number are highly heritable with values of 0.74 and 0.79, respectively.ConclusionsThe results show that seedling root phenotyping is a reliable tool that can be used for alfalfa germplasm selection and breeding. Phenotypic selection of RSA in seedlings reduced time for selection by 20 weeks, significantly accelerating the breeding cycle.

Highlights

  • Alfalfa (Medicago sativa L.) is the most widely cultivated forage legume worldwide and the third most widely produced crop in the United States, with an annual direct value of $10.8 billion in 2019 [1]

  • The objectives of this study were to: (1) identify measurable root traits that distinguishes the branch rooted from the tap rooted alfalfa genotypes at an early stage in development; (2) estimate the heritability of the root traits; (3) determine the correlation between root phenotypes observed at the seedling stage grown under controlled conditions to those observed in mature plants grown in the field; and (4) estimate the genetic gain achieved from the third to the fourth cycle of Degrees of freedom

  • After 14 days of growth under controlled conditions, the seedlings of the cycle 3 populations, branch rooted (UMN3233) and tap rooted (UMN3234), had developed root systems comprised of a primary root, secondary roots, and the beginnings of tertiary roots, arising from positions on the secondary roots (Fig. 2A)

Read more

Summary

Introduction

Alfalfa (Medicago sativa L.) is the most widely cultivated forage legume worldwide and the third most widely produced crop in the United States, with an annual direct value of $10.8 billion in 2019 [1]. RSA affects productivity by influencing the capacity of various plant functions such as symbiotic nitrogen fixation, nutrient uptake, water use efficiency [15], resistance to frost heaving [16], winterhardiness [17], and some pest and pathogen resistance [18]. Altering root architecture by developing maize lines with increased root depth, fewer crown roots and a decreased number of lateral root branches increases plant nitrogen acquisition, above ground growth and yield [13]. Alterations in RSA that produce an increase in lateral root density for topsoil foraging and reduce the growth of deeper roots, result in an increase in growth and yield as has been shown in common bean [13] and maize [23]. The root system architecture (RSA) of alfalfa (Medicago sativa L.) affects biomass production by influencing water and nutrient uptake, including nitrogen fixation. Plants were grown in a soil-free mixture under controlled conditions, the root systems were imaged with a flatbed scanner and measured using WinRhizo software

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.