Abstract

Vascular smooth muscle cells (vSMCs) can switch between a contractile (differentiated) and a synthetic (dedifferentiated) phenotype. Synthetic, proliferative vSMCs are observed during embryogenesis, wound repair, and tissue engineering. The potential of isolated vSMCs to reverse this phenotypic modulation depends strictly on culture conditions. Previous studies have demonstrated that applied shear stress is an important signal for vSMC phenotype. The objective of this study was to determine whether applied shear stress is capable of triggering re-differentiation of vSMCs in tissue-engineered aortas. vSMCs were isolated from ovine arteries. Cells were cultured statically or exposed to two- (2D) and three-dimensional (3D) shear stress after seeding on a tubular matrix. For 3D in vivo testing, grafts were seeded additionally with endothelial cells and implanted in the descending aorta. Particular attention was paid to the expression pattern of vSMC markers, cell ultra-structure, matrix remodeling activity, and proliferative activity. Cultured vSMCs de-differentiated during static in vitro culture, but 2D and 3D in vitro shear stress promoted re-expression of vSMC markers. During in vivo culture, vSMCs progressed toward a fully differentiated phenotype. Cells were expressing markers of differentiated vSMCs and resembled a morphologically contractile vSMC phenotype. Matrix remodeling activity and proliferative activity decreased. This study demonstrates the phenotypic plasticity of vSMCs and their ability to return to a differentiated phenotype under shear stress conditions. These results are crucial for tissue engineering of blood vessels, because they indicate for the first time the in vitro potential to regain physiological functionality of isolated vSMCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call