Abstract
To better understand the phenotypic plasticity of the highly invasive native weed, Pedicularis kansuensis, we investigated and compared phenotypes (morphology, biomass, and nutrient composition) at different levels of invasion (low: 0 < cover ≤ 30%; medium: 30% < cover ≤ 70%; and high: cover > 70%). With the increase in invasion level, the plasticity of inflorescence length, single-leaf thickness, and specific leaf area increased, while the plasticity of single-leaf area and crown width decreased. During the invasion process, we observed significant density-dependent effects, including changed morphological characteristics, increased total aboveground biomass, and decreased plant height, inflorescence length, root length, crown width, single-leaf area, structure biomass of structures (root, stem, inflorescence), and individual biomass (p < 0.05). During the reproductive period of P. kansuensis, the resource allocation (C, N, and P content, total biomass, biomass allocation) to inflorescence was significantly higher than to root and stem, while the elemental ratios (C:N, C:P, N:P) of inflorescences were significantly lower than those of roots and stems (p < 0.05). When the invasion level increased, the ratio of inflorescence C:N and biomass allocation to roots increased significantly; conversely, inflorescence N and biomass allocation to inflorescences and stems decreased significantly (p < 0.05). This led to a decrease in resource allocation to aboveground parts and more resources allocated to the roots, significantly increasing the root-to-shoot ratio (p < 0.05). Based on the phenotypic differences among different invasion levels, we suggest that P. kansuensis adapted to a competitive environment by regulating morphology, biomass, and nutrient allocation, thereby enhancing the potential of invasion and spread.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have