Abstract

We have previously demonstrated that the intraspecific diversity of leaf litter can influence ecosystem functioning during litter decomposition in the field. It is unknown whether the effects of phenotypic diversity persist when litter from an additional species is present. We used laboratory microcosms to determine whether the intraspecific diversity effects of turkey oak leaf litter on nutrient dynamics are confounded by the presence of naturally co‐occurring longleaf pine litter. We varied the phenotypic diversity of oak litter (1, 3, and 6 phenotype combinations) in the presence and absence of pine litter and measured fluxes of carbon and nitrogen over a 42‐week period. The average soil C:N ratio peaked at intermediate levels of oak phenotypic diversity and the total amount of dissolved organic carbon leached from microcosms decreased (marginally) with increasing oak phenotypic diversity. The soil carbon content, and the total amount of ammonium, nitrate, and dissolved organic carbon leached from microcosms were all influenced by initial litter chemistry. Our results suggest that the effects of phenotypic diversity can persist in the presence of another species, however specific litter chemistries (condensed and hydrolysable tannins, simple phenolics, C:N ratios) are more important than phenotypic litter diversity to most nutrient fluxes during litter decomposition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call