Abstract

Deterministic factors including homogeneous and heterogeneous selection and stochastic factors jointly shape ecological communities. However, a quantitative synthesis of the factors underlying the balance among different assembly processes is lacking. Here, we synthesized data from 149 datasets covering major biotic groups and ecosystem types globally. We used a null model approach based on Raup–Crick dissimilarities and Bayesian meta‐regression to analyze the data. We found that communities were more under homogeneous selection than heterogeneous selection across biotic taxa and ecosystems. Environment selected species homogeneously more often at small scales while heterogeneously more often at large scales. Stochasticity also showed scale‐dependence as stochastic community assembly increased with study scale. Homogeneous and heterogeneous selection were strongest at high latitudes while stochastic factors were strongest in tropics. Marine systems had the highest degree of homogeneous selection and the lowest stochasticity. We provide the first analysis of community assembly across taxa and ecosystems which should be important for a better understanding of how communities respond to environmental change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.