Abstract

The component parts of butterfly wing patterns are arranged in sets of serially homologous pattern elements, repeated from wing cell to wing cell. Measurements were made on the sizes and positions of these elements on two successive, independent, sets of specimens in order to elucidate the phenotypic correlation structure among pattern elements. That portion of the correlation between measures due to overall size variation was accounted for through two alternate methods: multiple regression on two vein length measures, which represent wing size, and a Wright-style factor analysis. The sizes of pattern elements belonging to a homologous series were found to be significantly correlated whereas those of non-homologous elements varied independently. The degree of correlation among homologs varied, and, in the case of eyespot sizes, appeared to be inversely related to the degree of their morphological divergence. Although not correlated in size, the positions of non-homologous elements that lie within the same wing cell are moderately correlated. The results support current developmental models for the ontogeny of butterfly color pattern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.