Abstract
A novel wax locus GLOSSY1 was finely mapped to an approximately 308.1-kbp genomic interval on chromosome 2DS of wheat. The epicuticular wax, the outermost layer of aerial organs, gives plants their bluish-white (glaucous) appearance. Epicuticular wax is ubiquitous and provides an essential protective function against environmental stresses. In this study, we identified the glossy1 mutant on the basis of its glossy glume from an EMS population in the elite wheat (Triticum aestivum L.) cultivar Jimai22. The mutant had a dramatically different profile in total wax load and composition of individual wax constituents relative to the wild type, resulting in the increased cuticle permeability of glumes. The glossy glume phenotype was controlled by a single, semidominant locus mapping to the short arm of chromosome 2D, within a 308.1-kbp genomic interval that contained ten annotated protein-coding genes. These results pave the way for an in-depth analysis of the underlying genetic basis of wax formation patterns and enrich our understanding of mechanisms regulating wax metabolism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.