Abstract
Increasingly, Listeria monocytogenes (LM) with atypical phenotypic and genotypic characteristics are being isolated from food, causing problems with their classification and testing. From 2495 soil, food, and swab samples from the food industry, 262 LM isolates were found. A total of 30 isolates were isolated, mainly from soil and plant food, and were classified as atypical LM (aLM) because they lacked the ability to move (30/11.4%) and perform hemolysis (25/9.5%). The isolation environment affected aLM incidence, cell size, sugar fermentation capacity, antibiotic sensitivity, and the number of virulence genes. Therefore, despite several characteristics differentiating all aLMs/non-hemolytic isolates from reference LMs, the remaining phenotypic characteristics were specific to each aLM isolate (like a fingerprint). The aLM/non-hemolytic isolates, particularly those from the soil and meat industries, showed more variability in their sugar fermentation capacity and were less sensitive to antibiotics than LMs. As many as 11 (36.7%) aLM isolates had resistance to four different antibiotics or simultaneously to two antibiotics. The aLM isolates possessed 3-7 of the 12 virulence genes: prfA and hly in all aLMs, while iap was not present. Only five (16.7%) isolates were classified into serogroups 1/2c-3c or 4a-4c. The aLM/non-hemolytic isolates differed by many traits from L. immobilis and atypical L. innocua. The reference method of reviving and isolating LM required optimization of aLM. Statistical analyses of clustering, correlation, and PCA showed similarities and differences between LM and aLM/non-hemolytic isolates due to individual phenotypic traits and genes. Correlations were found between biochemical traits, antibiotic resistance, and virulence genes. The increase in the incidence of atypical non-hemolytic LM may pose a risk to humans, as they may not be detected by ISO methods and have greater antibiotic resistance than LM. aLM from LM can be distinguished based on lack of hemolysis, motility, growth at 4 °C, ability to ferment D-arabitol, and lack of six specific genes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.