Abstract

IntroductionCholera, a disease caused by Vibrio cholerae O1 and O139 remains an important public health problem globally. In the last decade, Kenya has experienced a steady increase of cholera cases. In 2009 alone, 11,769 cases were reported to the Ministry of Public Health and Sanitation. This study sought to describe the phenotypic characteristics of the isolated V. cholerae isolates.MethodsThis was a laboratory based cross-sectional study that involved isolates from different cholera outbreaks. Seventy six Vibrio cholerae O1 strains from different geographical areas were used to represent 2007 to 2010 cholera epidemics in Kenya, and were characterized by serotyping, biotyping, polymerase chain r(PCR), pulsed-field gel electrophoresis (PFGE) and ribotyping along with antimicrobial susceptibility testing.ResultsSeventy six Vibrio cholerae O1 strains from different geographical areas were used to represent 2007 to 2010 cholera epidemics in Kenya. Serotype Inaba was dominant (88.2%) compared to Ogawa. The isolates showed varying levels of antibiotic resistance ranging from 100% susceptible to tetracycline, doxycycline, ofloxacin, azithromycin, norfloxacin and ceftriaxone to 100% resistant to furazolidone, trimethoprim-sulfamethoxazole, polymyxin-B and streptomycin. The isolates were positive for ctxA, tcpA (El Tor), rtxC genes and were biotype El Tor variant harboring classical ctxB gene. All the isolates were classified as cholera toxin (CT) genotype 1 as they had mutation in the ctxB at positions 39 and 68. All the isolates had genetically similar NotI PFGE and BglI ribotype patterns. The absence of any observed variation is consistent with a clonal origin for all of the isolates.ConclusionKenya experienced cholera numerous outbreak from 2007-2010. The clinical Vibrio cholerae O1 isolates from the recent cholera epidemic were serotypes Inaba and Ogawa, Inaba being the predominant serotype. The Vibrio cholerae O1 strains were biotype El Tor variants that produce cholera toxin B (ctx B) of the classical type and were positive for ctxA, tcpA El Tor and rtxC genes.

Highlights

  • Cholera, a disease caused by Vibrio cholerae O1 and O139 remains an important public health problem globally

  • There has been a steady increase of cholera cases in Kenya with 11,769 cases reported to Division of Disease Surveillance and Response (DDSR) of the Ministry of Public Health and Sanitation in 2009 (CFR=2.3%) as compared with 3091 cases (CFR 3.7%) in 2008 [3]

  • This study sought to describe the phenotypic characteristics of the isolated V. cholerae isolates by serotyping, biotyping, detection of virulence genes, antimicrobial susceptibility testing, ribotyping and pulsed-field gel electrophoresis (PFGE)

Read more

Summary

Introduction

A disease caused by Vibrio cholerae O1 and O139 remains an important public health problem globally. Seventy six Vibrio cholerae O1 strains from different geographical areas were used to represent 2007 to 2010 cholera epidemics in Kenya, and were characterized by serotyping, biotyping, polymerase chain r(PCR), pulsed-field gel electrophoresis (PFGE) and ribotyping along with antimicrobial susceptibility testing. The Vibrio cholerae O1 strains were biotype El Tor variants that produce cholera toxin B (ctx B) of the classical type and were positive for ctxA, tcpA El Tor and rtxC genes. There has been a steady increase of cholera cases in Kenya with 11,769 cases reported to Division of Disease Surveillance and Response (DDSR) of the Ministry of Public Health and Sanitation in 2009 (CFR=2.3%) as compared with 3091 cases (CFR 3.7%) in 2008 [3]. This study sought to describe the phenotypic characteristics of the isolated V. cholerae isolates by serotyping, biotyping, detection of virulence genes, antimicrobial susceptibility testing, ribotyping and pulsed-field gel electrophoresis (PFGE)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call