Abstract

Candida glabrata is the second most important human fungal pathogen. Despite its formal name, C. glabrata is in fact more closely related to the nonpathogenic budding yeast Saccharomyces cerevisiae. However, less is known about the biology of this pathogen. Zinc cluster proteins form a large family of transcriptional regulators involved in the regulation of numerous processes such as the control of the metabolism of sugars, amino acids, fatty acids, as well as drug resistance. The C. glabrata genome encodes 41 known or putative zinc cluster proteins, and the majority of them are uncharacterized. We have generated a panel of strains carrying individual deletions of zinc cluster genes. Using a novel approach relying on tetracycline for conditional expression in C. glabrata at the translational level, we show that only two zinc cluster genes are essential. We have performed phenotypic analysis of nonessential zinc cluster genes. Our results show that two deletion strains are thermosensitive whereas two strains are sensitive to caffeine, an inhibitor of the target of rapamycin pathway. Increased salt tolerance has been observed for eight deletion strains, whereas one strain showed reduced tolerance to salt. We have also identified a number of strains with increased susceptibility to the antifungal drugs fluconazole and ketoconazole. Interestingly, one deletion strain showed decreased susceptibility to the antifungal micafungin. In summary, we have assigned phenotypes to more than half of the zinc cluster genes in C. glabrata. Our study provides a resource that will be useful to better understand the biological role of these transcription factors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.