Abstract

Complex distribution networks are pervasive in biology. Examples include nutrient transport in the slime mold Physarum polycephalum as well as mammalian and plant venation. Adaptive rules are believed to guide development of these networks and lead to a reticulate, hierarchically nested topology that is both efficient and resilient against perturbations. However, as of yet, no mechanism is known that can generate such networks on all scales. We show how hierarchically organized reticulation can be constructed and maintained through spatially correlated load fluctuations on a particular length scale. We demonstrate that the network topologies generated represent a trade-off between optimizing transport efficiency, construction cost, and damage robustness and identify the Pareto-efficient front that evolution is expected to favor and select for. We show that the typical fluctuation length scale controls the position of the networks on the Pareto front and thus on the spectrum of venation phenotypes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.