Abstract

We explore the growth of colloidal quasicrystals with dodecagonal symmetry in two dimensions by employing Brownian dynamics simulations. On the one hand, we study the growth behavior of structures obtained in a system of particles that interact according to an isotropic pair potential with two typical length scales. On the other hand, we consider patchy colloids that possess only one typical interaction length scale but prefer given binding angles. In case of the isotropic particles, we show that an imbalance in the competition between the two distances might lead to defects with wrong nearest-neighbor distances in the resulting structure. In contrast, during the growth of quasicrystals with patchy colloids such defects do not occur due to the lack of a second interaction length scale. However, as a downside, the diffusion of patchy particles along a surface typically is slower such that domains occur where the particles possess different phononic and phasonic offsets. Our results are important to understand how soft matter quasicrystals can be grown as perfectly as possible and to obtain a deeper insight into the mechanisms of the growth of quasicrystals in general.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call