Abstract

Embryonic tendon cells have been studied in vitro to better understand mechanisms of tendon development. Outcomes of in vitro cell culture studies are easily affected by phenotype instability of embryonic tendon cells during expansion in vitro to achieve desired cell numbers, yet this has not been characterized. In the present study, we characterized phenotype stability, expansion potential, and onset of senescence in chick embryo tendon cells from low to high cell doublings. We focused on cells of Hamburger-Hamilton stages (HH) 40 and HH42, where HH40 is the earliest stage associated with substantial increases in extracellular matrix and mechanical properties during embryonic tendon development. HH40 and HH42 cells both downregulated expression levels of tendon phenotype markers, scleraxis and tenomodulin, and exhibited onset of senescence, based on p16 and p21 expression levels, cell surface area, and percentage of β-galactosidase positive cells, before significant decreases in proliferation rates were detected. These findings showed that embryonic tendon cells destabilize phenotype and become senescent earlier than they begin to decline in proliferation rates in vitro. Additionally, embryonic stage of isolation appears to have no effect on proliferation rates, whereas later stage HH42 cells downregulate phenotype and become susceptible to senescence sooner than earlier stage HH40 cells. Based on our data, we recommend chick embryo tendon cells be used before a maximum cumulative doubling level of 12 (passage 4 in this study) to avoid phenotype destabilization and onset of senescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.