Abstract

I review recent selected developments in the theory and modeling of ultrarelativistic heavy-ion collisions. I explain why relativistic viscous hydrodynamics is now used to model the expansion of the matter formed in these collisions. I give examples of first quantitative predictions, and I discuss remaining open questions associated with the description of the freeze-out process. I argue that while the expansion process is now well understood, our knowledge of initial conditions is still poor. Recent analyses of two-particle correlations have revealed fine structures known as ridge and shoulder, which extend over a long range in rapidity. These correlations are thought to originate from initial state fluctuations, whose modeling is still crude. I discuss triangular flow, a simple mechanism recently put forward, through which fluctuations generate the observed correlation pattern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call