Abstract
Translucent objects such as fog, clouds, smoke, glass, ice, and liquids are pervasive in cinematic environments because they frame scenes in depth and create visually-compelling shots. Unfortunately, they are hard to render in real-time and have thus previously been rendered poorly compared to opaque surfaces. This paper introduces the first model for a real-time rasterization algorithm that can simultaneously approximate the following transparency phenomena: wavelength-varying ("colored") transmission, translucent colored shadows, caustics, volumetric light and shadowing, partial coverage, diffusion, and refraction. All render efficiently with order-independent draw calls and low bandwidth. We include source code.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Visualization and Computer Graphics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.