Abstract

Time-of-flight depth camera assumes that target scene consists of opaque surfaces. Therefore, any translucent object causing multipath problem in depth calculation cannot be appropriately reconstructed. If we are able to detect translucent surface under time-of-flight principle, depth map obtained from opaque region will be more reliable. Translucent surface can be recovered by separate approach afterhand. In this paper, we propose a translucent surface detection method from multiple depth images obtained at different viewpoints. First, multiple depth maps are registered in a 3D space based on camera transformations. Our method classifies surfaces into three types: opaque, translucent, and not determined surface. Raycasting through registered depth maps investigates overlapped surfaces identifying respective surface types. Experimental evaluation on both synthetic 3D models and real translucent object shows promising translucent surface detection results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.