Abstract

A phenomenological thermodynamic theory of BaxSr(1-x)TiO3 (BST-x) thin films epitaxially grown on cubic substrates is developed using the Landau-Devonshire approach. The eighth-order thermodynamic potential for BT single crystal and modified fourth-order potential for ST single crystal were used as starting potentials for the end-members of the solid solution with the aim to develop potential of BST-$x$ solid solution valid at high temperatures. Several coefficients of these potentials for BT were changed to obtain reasonable agreement between theory and experimental phase diagram for BST-x (x > 0.2) solid solutions. For low Ba content we constructed the specific phase diagram where five phases converge at the multiphase point (T_N2 = 47 K, x = 0.028) and all transitions are of the second order. The "concentration-misfit strain" phase diagrams for BST-x thin films at room temperature and "temperature-misfit strain" phase diagrams for particular concentrations are constructed and discussed. Near T_N2 coupling between polarization and structural order parameter in the epitaxial film is modified considerably and large number of new phases not present in the bulk materials appear on the phase diagram.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.