Abstract
The self-consistent mean field (SCMF) method is applied to calculate the transport coefficients in a dilute BCC alloy with the dumbbell diffusion mechanism. The first degree of approximation (first shell) of the SCMF formalism coincides with the formerly derived pair association method, and the second degree of approximation (second shell) leads to a more accurate analytical formulation. The SCMF results are compared with other formalisms as well as existing and new Monte Carlo simulations, including the solute–dumbbell binding energy. This theory shows a good balance between accuracy and complexity in the investigated systems, and a simple criterion is proposed for the preferential use of the first and second shell approximations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.