Abstract

Controlling undesired polymerization in nominally unexposed regions is critical to achieving high-resolution, defect-free patterns when using negative tone molecular resists based on the crosslinking of epoxides. Two onium salt additives, a photodecomposable nucleophile (PDN) and a photoacid generator (PAG), were functionalized with phenols in order to investigate their use as generalized additives capable of slowing crosslinking and improving the resolution of a variety of epoxide resists. Presented here is a phenol-functionalized PDN [tris(4-hydroxyphenyl)sulfonium triflate (TPS-OH-Tf)] and a phenol-functionalized PAG [tris(4-hydroxyphenyl)sulfonium antimonate (TPS-OH-SbF6)] used in combination with a model epoxide resist (4-Ep). Utilizing additives that contained phenols resulted in a decrease in resist sensitivity, but enabled higher additive loadings which could be used to offset this loss in sensitivity. Using TPS-OH-SbF6 did not provide enough polymerization control to prevent line broadening, and the use of TPS-OH-Tf was still required to achieve sub 35 nm 1:1 line:space patterns. Adding TPS-OH-Tf was also found to improve pattern collapse behavior at reduced (<25 nm) feature sizes. Initial patterning using 100 keV electron-beam lithography showed that the resolution of 4-Ep was improved to 15 nm 1:1 line:space patterns using these phenol-functionalized additives and demonstrate the potential of these additives to improve the resolution of a variety of epoxide crosslinking molecular resists.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.