Abstract

Alkyne-based click polymerizations have been well-established. However, in order to expand the family to synthesize polymers with new structures and novel properties, new types of click polymerizations are highly demanded. In this study, for the first time, we established a new efficient and powerful phenol-yne click polymerization. The activated diynes and diphenols could be facilely polymerized in the presence of the Lewis base catalyst of 4-dimethylaminopyridine (DMAP) under mild reaction conditions. Regio- and stereoregular poly(vinylene ether ketone)s (PVEKs) with high molecular weights (up to 35 200) were obtained in excellent yields (up to 99.0 %). The reaction mechanism was well explained under the assistance of density functional theory (DFT) calculation. Furthermore, since the vinyl ether sequence acts as a stable but acid-liable linkage, the polymers could be decomposed under acid conditions, rendering them applicable in biomedical and environmental fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call