Abstract

Tissue-engineering associated techniques have long been employed to improve the various elements of the therapeutic approaches toward the more efficient ones in diabetic states. The resultant constructs comprise of the polymeric scaffolds with proper degradation rates that produce bodily compatible components, and the pluripotent cells that are highly capable of generating islet-like cells. In this study, Poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibers were fabricated by the Electrospinning. After validation of its 3-D structure, fibers size and non-toxicity, insulin-producing cells (IPC) differentiation potential of the induced pluripotent stem cells (iPSCs) were evaluated during growing on the PHBV nanofibers in comparison with tissue culture polystyrene (TCPS). SEM analyses confirmed the 3-D and nanofibrous structure of the fabricated scaffold. The survival rate of the iPSCs cultured on the PHBV nanofibers was increased significantly compared to the cells cultured on the TCPS, which is an evidence for the non-toxicity of the nanofibers. Insulin and C-peptide secretion levels significantly increased in the differentiated iPSCs on PHBV nanofibers compared to those cells cultured on TCPS. Moreover, levels of the gene transcription and translation results revealed that insulin, Glut-2, and Pdx-1 genes and insulin protein, in IPC-differentiated iPSCs grown on PHBV nanofibers are significantly higher than those cells grown on TCPS. Taken together, these results go beyond previous reports, showing thatiPSCs-PHBV as a promising cell-copolymer construct, could potentially be applied in the pancreatic tissue engineering applications to diabetic patient treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.