Abstract

Sleep-related movement disorders are characterized by the specific phenotypes of muscle activities and movements during sleep. However, the state-specific characteristics of muscle bursts and movement during sleep are poorly understood. In this study, jaw-closing and -opening muscle electromyographic (EMG) activities and jaw movements were quantified to characterize phenotypes of motor patterns during sleep in freely moving and head-restrained guinea pigs. During non-rapid eye movement (NREM) sleep, both muscles were irregularly activated in terms of duration, activity, and intervals. During rapid eye movement (REM) sleep, clusters of phasic bursts occurred in the two muscles. Compared with NREM sleep, burst duration, activity, and intervals were less variable during REM sleep for both muscles. Although burst activity was lower during the two sleep states than during chewing, burst duration and intervals during REM sleep were distributed within a similar range to those during chewing. A trigger-averaged analysis of muscle bursts revealed that the temporal association between the bursts of the jaw-closing and -opening muscles during REM sleep was analogous to the temporal association during natural chewing. The burst characteristics of the two muscles reflected irregular patterns of jaw movements during NREM sleep and repetitive alternating bilateral movements during REM sleep. The distinct patterns of jaw muscle bursts and movements reflect state-specific regulations of the jaw motor system during sleep states. Phasic activations in the antagonistic jaw muscles during REM sleep are regulated, at least in part, by the neural networks involving masticatory pattern generation, demonstrating that waking jaw motor patterns are replayed during sleep periods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call