Abstract

Nonlocal effects associated with quantum-mechanical states have been theoretically interesting because they emphasize the differences between classical and quantum mechanics. We describe a system in which a single input photon causes a nonlocal influence on two spatially separated homodyne detectors, as evidenced by a violation of Bell's inequalities. Unlike previous configurations for violating Bell's inequalities, the correlation is not imposed on a pair of particles that spatially separate before being detected. Rather, the correlation arises from the interaction of the local oscillators at each homodyne detector with the spatially extended field of the input photon. The above effect is only one of a class of situations in which nonlocal correlations can be imposed on separated homodyne detectors by quantum mechanical fields. By deriving the conditions for violating Bell's inequality with phase-sensitive detectors, new tests can be developed that relate to squeezed light and other nonclassical fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call