Abstract

We study the thermal partition function of level $k$ U(N) Chern-Simons theories on $S^2$ interacting with matter in the fundamental representation. We work in the 't Hooft limit, $N,k\to\infty$, with $\lambda = N/k$ and $\frac{T^2 V_{2}}{N}$ held fixed where $T$ is the temperature and $V_{2}$ the volume of the sphere. An effective action proposed in arXiv:1211.4843 relates the partition function to the expectation value of a `potential' function of the $S^1$ holonomy in pure Chern-Simons theory; in several examples we compute the holonomy potential as a function of $\lambda$. We use level rank duality of pure Chern-Simons theory to demonstrate the equality of thermal partition functions of previously conjectured dual pairs of theories as a function of the temperature. We reduce the partition function to a matrix integral over holonomies. The summation over flux sectors quantizes the eigenvalues of this matrix in units of ${2\pi \over k}$ and the eigenvalue density of the holonomy matrix is bounded from above by $\frac{1}{2 \pi \lambda}$. The corresponding matrix integrals generically undergo two phase transitions as a function of temperature. For several Chern-Simons matter theories we are able to exactly solve the relevant matrix models in the low temperature phase, and determine the phase transition temperature as a function of $\lambda$. At low temperatures our partition function smoothly matches onto the $N$ and $\lambda$ independent free energy of a gas of non renormalized multi trace operators. We also find an exact solution to a simple toy matrix model; the large $N$ Gross-Witten-Wadia matrix integral subject to an upper bound on eigenvalue density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.