Abstract

The cytoplasmic leucyl-tRNA synthetase was purified from bean (Phaseolus vulgaris) leaves. After ammonium sulfate fractionation and chromatography on Sephadex G-50, DEAE-cellulose, hydroxylapatite, and phosphocellulose, complete purification was achieved by blue Sepharose CL-6B chromatography using specific elution with pure yeast tRNALeu1. The enzyme was purified 1050-fold and had a specific activity of 940 nmol of leucyl-tRNA formed/min/mg of protein. Polyacrylamide gel electrophoresis of the native enzyme showed one band, but the denatured enzyme showed two bands. These two protein bands are structurally related. The smallest protein appears to be a cleavage product from the largest one, suggesting the presence of a sensitive cleavage site in the cytoplasmic leucyl-tRNA synthetase. The cytoplasmic enzyme is a monomer (Mr = 130,000), larger than its chloroplastic counterpart (Mr = 120,000). The two enzymes differ in their substrate (tRNA) specificity, tryptic peptide map, and amino acid composition. Antibodies were raised against the cytoplasmic enzyme and against the chloroplastic enzyme and no cross-immunological reaction was detected, showing that the two enzymes do not share any antigenic determinant. Taken together, these results suggest that P. vulgaris cytoplasmic and chloroplastic leucyl-tRNA synthetases are coded for by different genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call