Abstract

The cytoplasmic leucyl-tRNA synthetases of Neurospora crassa wild type (grown at 37 degrees C) and mutant (grown at 28 degrees C) were purified approximately 1770-fold and 1440-fold respectively. Additional enzyme preparations were carried out with mutant cells grown for 24 h at 28 degrees C and transferred then to 37 degrees C for 10-70 h of growth. The mitochondrial leucyl-tRNA synthetase of the wild type was purified approximately 722-fold. The mitochondrial mutant enzyme was found only in traces. The cytoplasmic leucyl-tRNA synthetase from the mutant (grown at 37 degrees C) in vivo is subject of a proteolytic degradation. This leads to an increased pyrophosphate exchange, without altering aminoacylation. Proteolysis in vitro by trypsin or subtilisin of isolated cytoplasmic wild-type and mutant leucyl-tRNA synthetases, however, did not establish and difference in the degradation products and in their catalytic properties. Comparing the cytoplasmic wild-type and mutant enzymes (grown at 28 degrees C) via steady-state kinetics did not show significant differences between these synthetases either. The rate-determining step appears to be after the transfer of the aminoacyl group to the tRNA, e.g. a conformational change or the release of the product. Besides leucine only isoleucine is activated by the enzymes with a discrimination of approximately 1:600; however, no Ile-tRNALeu is released. Similarly these enzymes, when tested with eight ATP analogs, cannot be distinguished. For both enzymes six ATP analogs are neither substrates nor inhibitors. Two analogs are substrates with identical kinetic parameters. The mitochondrial wild-type leucyl-tRNA synthetase is different from the cytoplasmic enzyme, as particularly exhibited by aminoacylating Escherichia coli tRNALeu but not N. crassa cytoplasmic tRNALeu. The presence of traces of the analogous mitochondrial mutant enzyme could be demonstrated. Therefore, the difference between wild-type and mutant leu-5 does not rest in the catalytic properties of the cytoplasmic leucyl-tRNA synthetases. Differences in other properties of these enzymes are not excluded. In contrast the activity of the mitochondrial leucyl-tRNA synthetase of the mutant is approximately 1% of that of the wild-type enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.