Abstract

The variations of phase velocity and normalized broadband ultrasonic attenuation (nBUA) with porosity were investigated in Polyacetal cuboid bone-mimicking phantoms with circular cylindrical pores running normal to the surface along the three orthogonal axes. The frequency-dependent phase velocity and attenuation coefficient in the phantoms with porosities from 0% to 65.9% were measured from 0.65 to 1.10 MHz. The results showed that the phase velocity at 880 kHz decreased linearly with porosity, whereas the nBUA increased linearly with porosity. This study provides a useful insight into the relationships between ultrasonic properties and porosity in bone at porosities lower than 70%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call