Abstract

In this study the attenuation coefficient and dispersion (frequency dependence of phase velocity) are measured using a phase sensitive (piezoelectric) receiver in a phantom in which two temporally overlapping signals are detected, analogous to the fast and slow waves typically found in measurements of cancellous bone. The phantom consisted of a flat and parallel Plexiglas plate into which a step discontinuity was milled. The phase velocity and attenuation coefficient of the plate were measured using both broadband and narrowband data and were calculated using standard magnitude and phase spectroscopy techniques. The observed frequency dependence of the phase velocity and attenuation coefficient exhibit significant changes in their frequency dependences as the interrogating ultrasonic field is translated across the step discontinuity of the plate. Negative dispersion is observed at specific spatial locations of the plate at which the attenuation coefficient rises linearly with frequency, a behavior analogous to that of bone measurements reported in the literature. For all sites investigated, broadband and narrowband data (3-7 MHz) demonstrate excellent consistency. Evidence suggests that the interference between the two signals simultaneously reaching the phase sensitive piezoelectric receiver is responsible for this negative dispersion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call