Abstract

The development of serum-/xeno-free media may help avoid the drawbacks of using serum and its components, such as probable contamination, instability of composition, or difficulty in sterilization. The objectives of this research were to investigate the use of combinations of a permeating cryoprotective agent (Me2SO) and non-permeating polymers (polyvinyl alcohol, polyvinylpyrrolidone, polyethylene glycol, hydroxyethyl starch, dextran) for cryopreservation of interstitial cells (ICs) of rat testis, and to propose the mechanism of cryoprotection of such compositions. In the course of this study, the best combination was 100 mg/ml dextran (M.m. 40 kDa) (Dex40) with 0.7 M Me2SO in Ham's F12. The ICs were additionally cooled and warmed to different end temperatures (−30, −50, −50 and −196 °C) to determine which temperature intervals contributed most to the IC loss. Then, the cryoprotective action of this serum-/xeno-free medium was investigated in comparison with serum or albumin-containing media by differential scanning calorimetry (DSC) and thermomechanical analysis (TMA). The results showed that the medium based on Dex40 did not decrease the amount of ice formed. However, it could undergo other phase separation and phase transformation to form glassy states. Potential cell-damaging physical processes such as eutectic crystallization/melting, recrystallization of NaCl and/or Me2SO derivatives, found in serum-containing media and taking place in specific temperature intervals, were not observed in the Dex40 based media. This was in good correlation with indicators of cell survival. Additionally, the application of Dex40 allowed using Me2SO in lower concentrations (0.7 M) than required for serum-containing media (1.4 M), which may decrease the toxicity of serum-/xeno-free media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.