Abstract

The phase transitions and critical phenomena in the three-dimensional (3D) site-diluted q-state Potts models on a simple cubic lattice are explored. We systematically study the phase transitions of the models for q=3 and q=4 on the basis of Wolff high-effective algorithm by the Monte–Carlo (MC) method. The calculations are carried out for systems with periodic boundary conditions and spin concentrations p=1.00–0.65. It is shown that introducing of weak disorder (p∼0.95) into the system is sufficient to change the first order phase transition into a second order one for the 3D 3-state Potts model, while for the 3D 4-state Potts model, such a phase transformation occurs when introducing strong disorder (p∼0.65). Results for 3D pure 3-state and 4-state Potts models (p=1.00) agree with conclusions of mean field theory. The static critical exponents of the specific heat α, susceptibility γ, magnetization β, and the exponent of the correlation radius ν are calculated for the samples on the basis of finite-size scaling theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.