Abstract

The phase transitions and critical phenomena in three-dimensional (3D) site-diluted 3-and 4-state Potts models is investigated by Monte-Carlo method based on the highly efficient Wolff algorithm. The systems with linear sizesL=20-44 at spin concentrationsp=1.00, 0.95, 0.90, 0.80, 0.70, 0.65 are explored. The second-order phase transition is shown to occur in the three-dimensional 3-state Potts model with nonmagnetic impurities. In the 4-state Potts model there are observed first-order phase transitions in weakly diluted state, when the model is strongly diluted the first-order phase transitions change to the second-order one. On the basis of the finite-size scaling theory static critical exponents of specific heatα, susceptibilityγ, magnetizationβ, and exponent of correlation radiusνfor the systems under study are calculated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call