Abstract

The phase- and phase-transition properties of glycerol–dipalmitate (GDP) bilayer patches are investigated using molecular dynamics simulations. This permits to characterize the influence of introducing a second aliphatic lipid tail by comparison to previously reported simulations of glycerol-1-monopalmitate (GMP). To this purpose, a set of 67 simulations (up to 300ns duration) of 2×8×8GDP bilayer patches are performed, considering the two GDP isomers glycerol-1,3-dipalmitate (13GDP) and glycerol-1,2-dipalmitate (12GDP; racemic), two hydration levels (12GDP only), and temperatures in the range 250–370K. In agreement with experiment, the GDP simulations reveal an increase in the main transition temperature by about 25K relative to GMP, and the occurrence of non-bilayer phases at high temperatures (inverted-cylinder or stacked phases). Structurally, the GDP system tends to evidence a tighter packing of the chains, a reduced extent of tilting, increased order parameters and a reduced fluidity. These differences are easily interpreted in terms of two key changes in molecular properties when going from GMP to GDP: (i) the reduction of the headgroup polarity and hydration (from two free hydroxyl groups to a single one); (ii) the increase in the effective tail cross-section relative to the (hydrated) headgroup cross-section, conferring to GDP a particular wedge shape. These two effects contribute to the relative instability of the liquid-crystalline phase, the stability being recovered in nature when the diglyceride headgroup is functionalized by a bulky or/and polar substituent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call