Abstract

AbstractIn order to study the relationship between the molecular structure and mechanical properties of rigid polyurethane foam (RPUF) during the mechanical and chemical failure process, the variation of the molecular structure and mechanical properties of RPUF treated in temperature range of 323–473 K were characterized by both theoretical and experimental methods. The molecular structure stability of RPUF varied with thermal treatment temperature was characterized by density functional theory method. The mechanical properties of base material of RPUF were simulated by means of molecular dynamics (MD) simulation. Then the related parameters obtained from the MD simulation were assigned into a representative volume element model of RPUF for the finite element analysis. The results indicated that the vibrational frequencies of isocyanate groups and amino acid ester groups in RPUF molecule increased while the molecular orbital energy gap of RPUF decreased with the increase of treatment temperature. It indicated that the RPUF molecule had high chemical reactivity at high temperature. The results of the multiscale simulation of mechanical properties showed that the defects and voids in RPUF generated under high temperature would grow with the increase of thermal treatment temperature, which intensified the stress concentration in RPUF and decreased the tensile properties of RPUF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call