Abstract

The oxygen ion diffusion and phase transition in La2Mo2−xWxO9 (x=0, 0.25, 0.75, 1.0, and 1.4) have been investigated by the internal friction method. In addition to the low-temperature relaxation peak associated with oxygen ion diffusion, an internal friction peak of phase transition type is observed around 350°C in all tungsten substituted La2Mo2O9 compounds. Based on the behavior of this peak and the ionic conduction properties, the mechanism of this peak is suggested to be associated with a transition from static disordered state to dynamic disordered state of oxygen ion distribution in anion sublattice that most probably results in a transition of the ionic conduction from the Arrhenius type to the Vogel-Tamman-Fulcher type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call