Abstract
The phase transition of waxy and normal wheat starches was systematically studied by light microscopy (LM) with a hot-stage, confocal laser scanning microscopy (CLSM) and differential scanning calorimetry (DSC). While being heated in water, waxy wheat starch showed a higher gelatinization enthalpy than that for the normal starch, which was also verified by the changes in birefringence. As confirmed by LM and CLSM, starch granules displayed an increased swelling degree with temperature increasing, and the gelatinization initially occurred at the hilum (botanical center) of the granules and then spread rapidly to the periphery. While the temperature range of birefringence was narrower than that of granule size change, the crystalline structure was melted at lower temperatures than those for the molecular orders. These results indicate that starch gelatinization was a complex process rather than a simple order-to-disorder granule transition.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have