Abstract
The paper studies the behavior of the trajectories of fluid particles in a compressible generalization of the Kraichnan ensemble of turbulent velocities. We show that, depending on the degree of compressibility, the trajectories either explosively separate or implosively collapse. The two behaviors are shown to result in drastically different statistical properties of scalar quantities passively advected by the flow. At weak compressibility, the explosive separation of trajectories induces a familiar direct cascade of the energy of a scalar tracer with a short-distance intermittency and dissipative anomaly. At strong compressibility, the implosive collapse of trajectories leads to an inverse cascade of the tracer energy with suppressed intermittency and with the energy evacuated by large-scale friction. A scalar density whose advection preserves mass exhibits in the two regimes opposite cascades of the total mass squared. We expect that the explosive separation and collapse of Lagrangian trajectories occur also in more realistic high Reynolds number velocity ensembles and that the two phenomena play a crucial role in fully developed turbulence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.